Author name: CDIA UdeC

Facultad de Ingeniería UdeC celebró ceremonia de graduación del MACI

Las y los graduados del Magíster en Ciencia de Datos para la Innovación (MACI) de la Facultad de Ingeniería de la UdeC, vivieron una emotiva ceremonia de entrega de sus diplomas de grado. El evento contó con la presencia del director de Postgrado, Bernardo Riffo Ocares, en representación del rector Carlos Saavedra Rubilar; junto a José Fuentes Sepúlveda, director del MACI; y Marcela Parada Contzen, directora del MIET. En la ceremonia, donde también se entregaron los diplomas del Magíster en Innovación y Emprendimiento Tecnológico (MIET), se destacó la importancia de retribuir los aprendizajes y conocimientos adquiridos a la sociedad y su desarrollo más pleno y equitativo. Por otro lado, Claudio Rojas Monsalves, quien realizó el discurso de despedida por parte del MACI, agradeció a las familias la oportunidad de permitirles balancear su vida profesional con la familiar. En esta ocasión, la ceremonia de titulación tuvo el honor de entregar el premio a Mejor Promedio generación de egreso 2023 del MACI a Oscar Hernán Hermosilla Ordoñez, destacando así su desempeño académico, dedicación, perseverancia y responsabilidad. Las y los alumnos titulados del MACI fueron: Dagoberto Fernando Bustos Collipal Oscar Hernán Hermosilla Ordóñez Loreto Aliette Mora Apablaza Fernando Antonio Peña Villalobos Claudio Andrés Rojas Monsalves Thomas Armin Schade Villagrán  

Facultad de Ingeniería UdeC celebró ceremonia de graduación del MACI Read More »

Director UDS UdeC fue parte de panel de investigadores en Congreso Futuro 2024

El conocimiento mundial narrado en primera persona es la apuesta de Congreso Futuro, que en su sexta versión en el Biobío contó con destacados investigadores e investigadoras, entre quienes se encuentra el director de la Unidad de Data Science UdeC, Guilermo Cabrera Vives. Organizado por el Gobierno Regional, y las Universidades de Concepción, Católica de la Santísima Concepción y del Bio-Bío -al alero del Congreso Nacional Central, la Fundación de Desafíos Futuro y la Academia Chilena de la Ciencia- el evento es un espacio de divulgación de conocimiento, ciencia, tecnología y arte. Este año, con la inteligencia artificial como protagonista y el Teatro UdeC como escenario, el Congreso reunió a diversos expertos/as nacionales e internacionales. Además de Cabrera, la investigadora Animashree Anandkumar y Guillermo Medina conformaron el primer panel de conversación. En dicho espacio, se reflexionó respecto a la integración de la inteligencia artificial y visión computacional para combatir el cambio climático, además de su impacto, riesgo y desafíos a nivel social. Para el también académico de la Facultad de Ingeniería UdeC, este congreso permite acercar el conocimiento científico a la sociedad, “ahora que estamos hablando de inteligencia artificial, cambio climático entre otras cosas, es relevante dar a conocer estos temas para saber también cuáles serán los avances en los próximos años y cómo está avanzando esta temática. Además de entender los riegos y oportunidades que la IA conlleva”. Siendo un espacio ciudadano de diálogo y reflexión sobre los temas sociales, culturales y políticos que la sociedad del presente enfrentará en un futuro cercano, el Congreso Futuro reúne a expertas/os y líderes de opinión a nivel nacional e internacional con la sociedad civil para motivar el conocimiento a través de charlas, conferencias, paneles y mesas de conversación.

Director UDS UdeC fue parte de panel de investigadores en Congreso Futuro 2024 Read More »

DeepHub presente en el Torneo New Space: Innovación Espacial para el Monitoreo Forestal

La plataforma basada en inteligencia artificial para análisis de imágenes aéreas de interés forestal, DeepHub, fue seleccionada para participar del Torneo New Space: Oportunidades para la Industria, programa que busca impulsar el desarrollo de una economía más sostenible y diversificada, donde la innovación espacial es protagonista. Con el Centro de Innovación Espacial Biobío (CIES) como impulsor, ejecutada por Leitat Chile y financiada por el Gobierno Regional del Biobío, esta iniciativa reúne diversos proyectos de la Región del Biobío, que emplean la ciencia de datos en su desarrollo, basándose en información o tecnología satelital. Es así como este jueves se llevó a cabo el evento de bienvenida, en el que se presentaron los proyectos, soluciones, emprendimientos y/o empresas seleccionadas para ser parte del torneo, todo en presencia de representantes del Gobierno Regional del Biobío, Leitat, CIES Biobío, Centros I+D, Instituciones de Educación Superior, líderes de las principales industrias participantes, entre otras entidades regionales. Considerando que el torneo busca que se haga uso de imágenes espaciales y geoespaciales, “A través de Incuba UdeC, decidimos inscribirnos y postular dado que, en la actualidad, Chile y la FACH disponen de varios satélites, y nuestra propuesta consiste en aprovechar esos datos e información, que actualmente usamos en la gestión y manejo de recursos naturales o predios”, comentó Karla Cerda, CEO del proyecto Deephub. DeepHub Con las facultades de Ingeniería y de Ciencias Forestales de la Universidad de Concepción como ejecutores, y gestionado por la Unidad de Data Science, DeepHub es una plataforma web de monitoreo forestal remoto, que funciona por medio de imágenes aéreas e inteligencia artificial. Dicha iniciativa permite procesar, visualizar, etiquetar y entrenar modelos de segmentación, detección y conteo de las especies forestales, ayudando a la estimación de la cantidad de especies existentes dentro de un predio forestal, a fines de estimación de oferta, índice de vegetación, y monitoreo. Para Karla Cerda, también Subgerenta de Gestión UDS UdeC, “este es un proyecto que se ha estado desarrollando hace varios años. Partió en 2018 con un prototipo que permitía realizar conteo de árboles en predios forestales y actualmente es una plataforma web que permite procesar imágenes aéreo georreferenciadas, etiquetar y entrenar modelos de inteligencia artificial que permiten detectar, contar, clasificar y segmentar diversas especies forestales. “Tiene un gran potencial, puesto que es escalable. Esperamos que en un futuro no solo podamos monitorear predios forestales, sino que también incendios, depósitos de agua, desastres naturales, entre otros” destacó Karla Cerda.

DeepHub presente en el Torneo New Space: Innovación Espacial para el Monitoreo Forestal Read More »

Charla UDS abrió dialogo en torno al metalenguaje y control cognitivo

Este viernes la Facultad de Ingeniería -junto a la Unidad de Data Science- recibió a Rodrigo Carrasco-Davis, estudiante de 4to año de Doctorado en la Gatsby Computational Neuroscience Unit de University College London, quien brindó la charla «Cognitive Control as Meta-Learning in Neural Networks». En la instancia, Rodrigo compartió su experiencia inmerso en la investigación del metalenguaje y el control cognitivo,  y exploró el puente entre la biología y la tecnología, ofreciendo una visión única sobre las intersecciones entre estos dos campos. Su presentación abordó las oportunidades excepcionales que surgen de comprender y aplicar estos conceptos en la era actual. Para la ingeniera de proyecto de la UDS UdeC, Melissa Muñoz, quien asistió a la charla, «la instancia fue una ventana para ver qué es lo que se está investigando actualmente en este campo; una mirada de lo que se investiga en Inglaterra y los vínculos con otras universidades, lo que es -de igual forma- una invitación a ver qué podríamos hacer desde América Latina». «Es una muy buena oportunidad para conocer las aplicaciones, que quizás no son las más recurrentes en la universidad, pero que nos permiten pensar en investigaciones interdisciplinarias que puedan ser un aporte significativo para la sociedad» destacó Muñoz.

Charla UDS abrió dialogo en torno al metalenguaje y control cognitivo Read More »

Prácticas UDS UdeC: estudiantes participarán de proyectos en ciencia de datos e IA

Como cada año, este martes la Unidad de Data Science UdeC dio la bienvenida a sus practicantes de verano. Son 15 estudiantes de diversas disciplinas, desde ingeniería civil Industrial, Química, Informática y Matemática hasta Astronomía y civil Biomédica, que estarán colaborando en diferentes proyectos liderados por ingenieros, ingenieras y data scientist. Entre estos proyectos de los que participarán se encuentran ALeRCE, DeepHub, la Integración de Información LiDAR con imágenes aéreas para la estimación de biomasa y carga combustible en el proyecto institucional de la Universidad de Concepción, Campus Naturaleza, y el desarrollo de sistemas de control model-free basados en reinforcement learning. Además, se embarcarán en proyectos como la implementación de una política de evasión de colisiones sim-to-real mediante aprendizaje por refuerzo, transformación digital en salud orientada a pacientes con enfermedades crónicas, y recomendaciones personalizadas de actividad física para clientes CESFAM. Otros desafíos incluyen el Deck de inversiones DeepHub y el desarrollo de plataformas de gestión de pregrado para la facultad de ingeniería. Para el equipo de la UDS UdeC, “esta es una oportunidad donde las y los estudiantes pueden aplicar sus conocimientos y habilidades en un entorno práctico, permitiéndoles colaborar en proyectos significativos y con impacto. Es muy importantes abrir este tipo de espacios de aprendizaje, ya que contribuye al desarrollo de futuros profesionales altamente capacitados/as para enfrentar los desafíos del mundo real”.

Prácticas UDS UdeC: estudiantes participarán de proyectos en ciencia de datos e IA Read More »

Dagoberto Bustos: “este programa me ha permitido abordar y resolver problemas de manera concreta y ágil en mi trabajo”

El ingeniero Civil en Biotecnología y Magíster en Ciencia de Datos para la Innovación (MACI), Dagoberto Bustos Collipal, compartió su experiencia estudiando el MACI de la Universidad de Concepción. Aquí destacó cómo el programa le ayudó a crecer tanto profesional como personalmente, “el MACI me ha permitido abordar y resolver problemas de manera concreta y ágil en mi trabajo. Desarrollé la capacidad de explicar, utilizando herramientas simples, pero altamente efectivas. La forma en que los profesores enseñaron denota mucha expertise en sus respectivas áreas, y eso se me traspasó de forma amigable”. “No fue fácil, pero para alguien como yo, que no tenía un dominio avanzado en programación, logré asimilar los conocimientos de manera gradual. Hoy en día, tengo la capacidad de resolver problemas y, mejor aún, de explicar las soluciones en mi trabajo. Debo comentar que soy la primera generación de profesionales en mi familia y tengo la responsabilidad de mostrar que las metas se van cumpliendo. Esto es un gran logro y este magíster me llenó de orgullo”, agregó. Por otro lado, comentó sobre su experiencia en la pasantía en IACS HARVARD, en 2022. “Conocer las instalaciones de Microsoft, MIT Media Lab e IACS es una experiencia que te muestra una realidad alucinante, en la que, de otra forma, personalmente, me hubiese sido imposible de conocer. Esta experiencia me hizo reafirmar el compromiso de ser mejor a través del esfuerzo y estudio” destacó.

Dagoberto Bustos: “este programa me ha permitido abordar y resolver problemas de manera concreta y ágil en mi trabajo” Read More »

Deep-Hub: cierra con éxito proyecto de Inteligencia Artificial para el análisis de imágenes aéreas

Tras dos años de trabajo, este miércoles se llevó a cabo el evento de cierre del proyecto FONDEF, Deep-Hub: Plataforma Basada en Inteligencia Artificial para Análisis de Imágenes Aéreas de Interés Forestal, en el marco del Concurso IDeA I+D 2021. Deep-Hub consta de una plataforma tecnológica de análisis de imágenes aéreas de diferente origen y configuración como drones y satélites, basado en algoritmos de inteligencia artificial. Para el director del proyecto, Guillermo Cabrera, “este es un sistema muy complejo que trabaja en la nube, entonces hay que definir distintos módulos que deben interactuar entre sí. El diseño del software tomó ocho meses sólo armarlo y probarlo, entonces hubo un periodo largo, donde sólo estuvimos diseñando los componentes de software”. “Pero luego, como todo estuvo tan bien diseñado pudimos comenzar a sacar productos muy rápido y así avanzamos de manera veloz”, destacó Cabrera. El proyecto, iniciativa de las facultades de Ingeniería y de Ciencias Forestales de la Universidad de Concepción, también contó con empresas asociadas como ARAUCO, CONAF, Lago Lanalhue y Hancock, y con la gestión de la Unidad de Data Science.  Deep-Hub se transformó en una herramienta valiosa para dar soporte técnico en el área del monitoreo y manejo de bosques y recursos naturales. Para el director alterno del proyecto, Simón Sandoval, “el impacto está en entregar información de calidad y precisa que permita mejorar la gestión de los bosques”. “Es información que en un corto plazo cada vez será mayor, ahora se puede hacer de manera más rápida, casi en tiempo real, lo que mejora todo lo que es medición, cosa que se hace principalmente en terreno, y es muy caro y riesgoso”, agregó Sandoval. Hoy, el principal desafío es aplicarlo en otras áreas de negocio, “aquí tu subes una imagen, etiquetas diversos elementos dentro de una imagen y después el algoritmo de inteligencia artificial aprende a reconocer esos componentes. Con solo esa premisa, tu puedes aplicarlo a cualquier cosa, a imágenes de microscopio, de telescopios, satelitales para detectar casas, poblaciones de personas, lo puedes aplicar a lo que sea”, comentó Cabrera.  

Deep-Hub: cierra con éxito proyecto de Inteligencia Artificial para el análisis de imágenes aéreas Read More »

Prácticas de Veranos UDS UdeC

En Unidad de Data Science de la Universidad de Concepción te invitamos a realizar tu práctica con nuestro equipo. Podrás trabajar en proyectos desafiantes formando parte de un equipo integrado por ingenieros, ingenieras y data scientists de alto nivel.  Para postular, envía un email a uds@inf.udec.cl incluyendo: Informe de notas Un párrafo describiendo tu interés y el tema de preferencia en caso de tenerlo (ver temas abajo). Fecha de término postulaciones: 17 de diciembre 2023. Toda práctica realizada con nosotros incluye una remuneración bruta mensual de $200.000 con dedicación full time. ALeRCE (https://alerce.online/) Los telescopios de última generación están monitoreando constantemente el cielo en búsqueda de objetos astronómicos interesantes y desconocidos. Cientos de miles de alertas por noche son producidas por estos telescopios y en el futuro llegarán a ser millones. Una alerta se genera cada vez que un objeto cambia ya sea en posición o brillo con respecto a una imagen de referencia (e.g. explosión de estrellas, asteroides u objetos periódicos, entre otros). ALeRCE (Automatic Learning for the Rapid Classification of Events) es un sistema integrado que apunta a la rápida clasificación de los eventos provenientes de telescopios de rastreo con el fin de seleccionar automáticamente a los candidatos relevantes a ser seguidos. Actualmente estamos buscando practicantes en las áreas de machine learning para el desarrollo de algoritmos de detección de anomalías para ALeRCE.  Requisitos: Programación en Python y alguna asignatura relacionada a Ciencia de Datos Duración: 2 meses Deephub Deephub es una herramienta para el monitoreo de especies a partir de imágenes georeferenciadas. La herramienta utiliza diversos algoritmos de deep learning para el conteo, detección, segmentación y clasificación de objetos, proporcionando información área de gran relevancia para diversos sectores en nuestro país. El objetivo de esta práctica es la investigación de modelos fundacionales de visión computacional para el apoyo a las labores de etiquetado manual requeridas para el entrenamiento de modelos supervisados en Deephub. Requisitos: Programación en Python y alguna asignatura relacionada a Ciencia de Datos Duración: 2 meses Integración de Información LiDAR con imágenes aéreas para la estimación de biomasa y carga combustible en el proyecto institucional de la Universidad de Concepción, Campus Naturaleza El proyecto institucional Campus Naturaleza busca, en términos generales, la reconversión de uso de suelo en el predio La Cantera el Guindo, patrimonio forestal de la Universidad de Concepción. Específicamente pasar de un uso forestal productivo hacia una superficie plantada y restaurada con bosque nativo. Esto podría repercutir en disminuir la cantidad de biomasa y carbono almacenada en el sitio por las plantaciones forestales. Por otro lado, habrían alcances positivos, principalmente con el aumento de la biodiversidad y la disminución de la carga de combustible. Esto hace fundamental tener una cuantificación y caracterización de biomasa en el bosque, y para ello se dispone de información LiDAR e imágenes aéreas la cual permitiría generar herramientas eficaces que ayuden en la toma de decisiones y en concentrar los esfuerzos de la gestión forestal del proyecto Campus Naturaleza. Requisito deseable: Conocimientos o experiencia en manipular y procesar imágenes aérea Duración: 1 mes Desarrollo de sistemas de control model-free basados en reinforcement learning  En la época actual, existe gran disponibilidad de datos que nos permiten realizar diferentes tareas de operación sobre realidades físicas, tales como modelar, monitorear, controlar y optimizar. En este sentido, los sistemas de control son útiles para que nuestra realidad física o proceso opere en condiciones seguras y confiables, a la vez que permiten asegurar la robustez ante perturbaciones y el seguimiento de referenciales para alcanzar una operación óptima. Muchos sistemas de control se basan en un modelo del proceso, lo cual limita su desempeño a la precisión de dicho modelo. Recientemente [2-5] proponen una nueva tendencia en sistemas de control que no requieren conocer un modelo del proceso y que ajustan sus parámetros con métodos de inteligencia artificial, esencialmente Reinforcement Learning (RL). El objetivo de la práctica es desarrollar experimentos numéricos en Python que sean conducentes a una primera aproximación de sistemas de control cuyos parámetros se ajusten mediante RL sobre procesos lineales de primer y segundo orden, habilitando su evaluación considerando indicadores de desempeño de la precisión del controlador y costo computacional. Requisitos: Haber realizado cursos de: reinforcement learning, optimización Continuidad: Extensión a proyecto de tesis de pregrado o postgrado Duración: 2 meses Extendiendo capacidades de Análisis de  Vulnerabilidades en Chatbots Basados en Grandes Modelos de Lenguaje (LLMs) En el marco de nuestros esfuerzos continuos por innovar en el campo de la seguridad informática, nos hemos embarcado en el desarrollo de una herramienta avanzada para el análisis de vulnerabilidades en chatbots impulsados por Modelos de Lenguaje de Aprendizaje Profundo (LLMs). Actualmente, estamos diseñando métricas universales, que no dependen del propósito específico del chatbot. Esta metodología se inspira en herramientas de análisis de vulnerabilidades de software, que operan de manera independiente al ámbito de aplicación del software analizado, tomando como referencia estándares como el Sistema de Puntuación de Vulnerabilidades Comunes (CVSS) y diversas normativas internacionales. El objetivo principal de esta práctica es investigar y desarrollar mecanismos de evaluación que ahora se centren en el dominio operativo del chatbot. Para ello, se utilizarán técnicas como la Generación de Respuestas y Argumentación (RAG), y/o el ajuste fino (finetuning) para generar consultas automáticamente en base a conocimiento del dominio de aplicación y evaluar automáticamente la calidad de las respuestas. El fin último es ampliar el alcance de las pruebas automáticas aplicables a los chatbots, integrándolas en nuestra herramienta en desarrollo. El practicante se unirá a un equipo de trabajo recientemente establecido, enfocado en la seguridad de los Modelos de Lenguaje de Aprendizaje Profundo (LLM Security), donde tendrá la oportunidad de contribuir a un proyecto innovador y de vanguardia en el campo de la ciberseguridad. Requisito excluyente: Dominio de programación en Python. Requisitos deseables: Conocimientos en Procesamiento de Lenguaje Natural (NLP) y experiencia en el uso de APIs para Modelos de Lenguaje de Aprendizaje Profundo (LLMs) Duración: 2 meses Implementación de una política de evasión de colisiones sim-to-real mediante aprendizaje por refuerzo Un equipo de investigación

Prácticas de Veranos UDS UdeC Read More »

La ciencia de datos como motor de la innovación: testimonio de Fernando Peña

Fernando Peña es ingeniero civil matemático y magíster en ciencia de datos para la innovación de la Universidad de Concepción (UdeC). En esta entrevista, nos cuenta su experiencia en el programa y su visión sobre la ciencia de datos y la innmovación. ¿Cómo fue tu experiencia en el MACI? Desde que entré al MACI, siempre sentí que pasamos los contenidos que prometían en un inicio. Haber estudiado el MACI me permitió ampliar la visión que tenía sobre todo en la parte de innovación, me ayudó a fortalecer esos puntos donde estaba más débil. Al ser un magíster online, te permite tomar las clases desde cualquier parte del país, y la UdeC entrega todas las herramientas necesarias para facilitar la comunicación, y que aunque fuera online, pudiéramos comunicarnos eficientemente. Por otro lado, las jornadas presenciales (una al trimestre) fueron muy enriquecedoras. Realicé mi tesis de la predicción del umbral de +2.5 goles en el fútbol mundial en base a datos históricos y algoritmos de machine learning. Respecto a su tesis comenta que, «al principio no tenía una idea clara sobre de qué podía hacer mi tesis, y justo con la pandemia hubo un auge en las casas de apuestas. La pregunta era si podría calcular mejor una probabilidad que la casa de apuestas. Así que me puse a calcular mi propia probabilidad en base a la histórica de los resultados de los equipos, resultados previos y ahí fui explorando la parte de obtención de datos y conocer las variables que más influyen. Ahí me di cuenta que mis probabilidades estaban correlacionadas con las probabilidades de ellos, sin conocer yo los algoritmos que utilizaban; era interesante ver que de distintos caminos llegábamos a lo mismo. ¿Cuál es la importancia de la ciencia de datos para la innovación? La ciencia de datos se puede aplicar para cualquier problema, porque si uno entiende los datos, pones el algoritmo y ahí está, la programación, la estadística, y todo eso está empaquetado. Hoy en día cualquiera puede acceder a los algoritmos de manera online, ya no hay restricciones para eso. La parte fundamental de esto, y que se inculca harto, es el conocimiento del dominio, el saber qué estoy haciendo, qué variable estoy usando, ¿mi algoritmo está respondiendo a lo que quiero?, ¿estas variables de verdad influyen? Esa es la parte más difícil. Saber cuáles son las variables, porque cualquiera puede hacer un algoritmo, escribir una línea de código, pero lo complejo es identificar claramente qué es lo que de verdad influye, en este caso, el aprendizaje supervisado es lo que más influye en el resultado final. Al final, creas un molde en tu cabeza, que después puedes ajustar a otro problema. Por ejemplo, yo trabajé con datos de fútbol, hay goles, partidos, equipos, ligas, etc. pero después puedo ir perfectamente -por ejemplo- a un hospital, que tiene pacientes, salas de atención, horarios; entonces tu mente ya tiene esa lógica de trabajo. El MACI ayuda mucho a realizar ese molde, para poder abordar problemas de ciencia de datos donde uno no es experto en el dominio, pero puede apoyar en primera instancia todo lo que tiene que ver con la parte técnica y la de implementación de algoritmos. El magíster en Ciencia de Datos para la innovación cuenta con una pasantía internacional donde sus estudiantes pueden participar de cursos relacionados con las temática tratadas, conocer su ecosistema, visitar empresas líderes y sus experiencias en la materia, así como también ver casos aplicados de innovación en ciencia de datos. ¿Qué te pareció la pasantía en Harvard? En la pasantía conocimos Harvard, aprendimos su historia, tuvimos clases con académicos destacados, como Pavlos Protopapas, que nos dio otra mirada. Por ejemplo, nos enseñaba el algoritmo de una manera más allá, como la lógica, qué es lo que busca cada algoritmo. Aquí en Chile estamos muy alejados de esa inversión en tecnología que en ocasiones es muy necesaria y aquí tenemos harta gente con talento. Reconocer esas brechas nos ayuda a replantearnos las cosas que podemos proponer. Llegar con esa mirada de lo que podemos hacer nos permite tener ese bagaje para poder proponer ideas en el trabajo, independiente de donde se esté. Con los ramos de analítica ya pasados, pudimos verlos desde otra perspectiva, entonces llegar con esos conocimientos nos permitió complementarlos, fue una gran oportunidad. El Magíster en Ciencia de Datos para la Innovación tendrá su próxima versión en marzo 2023 y ya tiene confirmada su pasantía a IACS – HARVARD.

La ciencia de datos como motor de la innovación: testimonio de Fernando Peña Read More »

UDS UdeC desarrollará aplicación para el Programa de Acción Regional Contra la Discriminación de Fundación Iguales

Con el objetivo de abordar importantes desafíos relacionados con la violencia de género en la actualidad, la Unidad de Data Science UdeC, desarrollará una aplicación móvil, en el marco del Programa de Acción Regional Contra la Discriminación, de Fundación Iguales. El objetivo del proyecto es prevenir la discriminación por orientación sexual, identidad y/o expresión de género en la región del Biobío, y es en su primer componente -de Aplicación Móvil Digital y Análoga- en dónde participará la UDS UdeC. Para Carlos Castillo, Jefe de Proyectos y Recaudación de Iguales, “este es un proyecto interesante, ya que a nivel regional no existe una iniciativa de este tipo. Sobre todo, considerando que la región del Biobío es una de las que más presenta discriminación y violencia contra la comunidad LGTBIQ+ a nivel nacional”. La aplicación, por un lado, se enfoca en el usuario, proporcionando información sobre protocolos de denuncia relacionados con la violencia de género y los crímenes de odio. También incluirá un botón de pánico que permita solicitar asistencia policial de manera rápida y efectiva. Además, proporcionará información sobre la georreferenciación de lugares seguros a los que las personas puedan dirigirse en situaciones de peligro. Por otro lado, la aplicación contribuirá a la recopilación de estadísticas que ayudarán a identificar áreas con mayor incidencia de crímenes de odio y violencia, permitiendo una reacción más efectiva y un mayor apoyo a las víctimas. Para todo lo anterior, contará con un botón de pánico, información sobre violencia y discriminación, y estadísticas que permitirán identificar las áreas con mayor incidencia de crímenes de odio y violencia. Para Gonzalo Pérez, Jefe de Proyecto, la app puede contribuir a un cambio positivo en la sociedad, “denunciar casos de violencia de género suele ser difícil debido a la burocracia, la lentitud y el cuestionamiento que a menudo enfrentan las denuncias formales. La aplicación ayudará a facilitar y recopilar datos relevantes sobre la discriminación hacia la diversidad sexual y la violencia de género”. “Es un muy buen proyecto; esto va a ser algo importante y por eso queremos hacer una aplicación impecable, que perdure en el tiempo”, agregó Pérez. Por otro lado, para Melissa Muñoz, Ingeniera de Proyecto UDS, participar de este proyecto es un orgullo: “Como parte de la comunidad LGTBI, poder aportar en dar herramientas para enfrentar esta violencia es una gran oportunidad que agradezco vivir como desarrolladora”.

UDS UdeC desarrollará aplicación para el Programa de Acción Regional Contra la Discriminación de Fundación Iguales Read More »

CRÉDITOS 6 / 48 HORAS

Fundamentos de bases de datos y algoritmos

Esta asignatura está orientada a la formación de competencias básicas para la solución de problemas de naturaleza algorítmica elemental, junto con el diseño y consulta de bases de datos relacionales de baja complejidad. Contempla el desarrollo de habilidades básicas en programación y algoritmos e incluye conceptos fundamentales para el trabajo con bases de datos.